Self-Consistent Field Lattice Model for Polymer Networks

نویسندگان

  • Nicholas B. Tito
  • Cornelis Storm
  • Wouter G. Ellenbroek
چکیده

A lattice model based on polymer self-consistent field theory is developed to predict the equilibrium statistics of arbitrary polymer networks. For a given network topology, our approach uses moment propagators on a lattice to self-consistently construct the ensemble of polymer conformations and cross-link spatial probability distributions. Remarkably, the calculation can be performed "in the dark", without any prior knowledge on preferred chain conformations or cross-link positions. Numerical results from the model for a test network exhibit close agreement with molecular dynamics simulations, including when the network is strongly sheared. Our model captures nonaffine deformation, mean-field monomer interactions, cross-link fluctuations, and finite extensibility of chains, yielding predictions that differ markedly from classical rubber elasticity theory for polymer networks. By examining polymer networks with different degrees of interconnectivity, we gain insight into cross-link entropy, an important quantity in the macroscopic behavior of gels and self-healing materials as they are deformed.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multiscale coupling of molecular dynamics and hydrodynamics: an application to bio-polymer translocation through a nanopore

A new multiscale approach to the modeling of polymer dynamics in the presence of a fluid solvent is presented. The approach combines Langevin Molecular Dynamics (MD) techniques with a mesoscopic Lattice-Boltzmann (LB) method for the self-consistent solvent dynamics. A unique feature of the present approach is that hydrodynamic interactions between the solute macromolecule and the aqueous solven...

متن کامل

Lattice Gas Automata Simulation of Adsorption Process of Polymer in Porous Media

Lattice gas automata (LGA) model is developed to simulate polymer adsorption process by adding some collision rules. The simulation result of the model is matched with batch experiment and compared with accepted isothermal adsorption equations. They show that the model is viable to perform simulation of the polymer adsorption process. The LGA model is then applied for simulating continuous poly...

متن کامل

Mean-field lattice trees

We introduce a mean-field model of lattice trees based on embeddings into Zd of abstract trees having a critical Poisson offspring distribution. This model provides a combinatorial interpretation for the self-consistent mean-field model introduced previously by Derbez and Slade, and provides an alternate approach to work of Aldous. The scaling limit of the mean-field model is integrated superBr...

متن کامل

Statistical Mechanics of the Combinatorial Synthesis and Analysis of Folding Macromolecules

Combinatorial chemistry techniques provide a promising route to the design of macromolecules that acquire predetermined folded conformations. A library of sequences based on a pool of different monomer types can be synthesized, where the sequences are partially designed so as to be consistent with a particular target conformation. The library is screened for folding molecules. The number of seq...

متن کامل

Interfaces in partly compatible polymer mixtures: a Monte Carlo simulation approach

The structure of polymer coils near interfaces between coexisting phases of symmetrical polymer mixtures (AB) is discussed, as well as the structure of symmetric diblock copolymers of the same chain length N adsorbed at the interface. The problem is studied by Monte Carlo simulations of the bond fluctuation model on the simple cubic lattice, choosing N = 32 and lattice linear dimensions L ×D × ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017